3Sum
描述
Given an array S
of n
integers, are there elements a, b, c
in S
such that a + b + c = 0
? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet
(a,b,c)
must be in non-descending order. (ie, ) - The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}
.
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
分析
先排序,然后左右夹逼,复杂度 。
这个方法可以推广到k-sum
,先排序,然后做k-2
次循环,在最内层循环左右夹逼,时间复杂度是 。
代码
// 3Sum
// 先排序,然后左右夹逼,注意跳过重复的数
// Time Complexity: O(n^2),Space Complexity: O(1)
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
if (nums.size() < 3) return result;
sort(nums.begin(), nums.end());
const int target = 0;
auto last = nums.end();
for (auto i = nums.begin(); i < last-2; ++i) {
if (i > nums.begin() && *i == *(i-1)) continue;
auto j = i+1;
auto k = last-1;
while (j < k) {
if (*i + *j + *k < target) {
++j;
while(*j == *(j - 1) && j < k) ++j;
} else if (*i + *j + *k > target) {
--k;
while(*k == *(k + 1) && j < k) --k;
} else {
result.push_back({ *i, *j, *k });
++j;
--k;
while(*j == *(j - 1) && j < k) ++j;
while(*k == *(k + 1) && j < k) --k;
}
}
}
return result;
}
};