Word Ladder
描述
Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example, Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
, return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
分析
求最短路径,用广搜。
单队列
// Word Ladder
// 时间复杂度O(n),空间复杂度O(n)
struct state_t {
string word;
int level;
state_t() { word = ""; level = 0; }
state_t(const string& word, int level) {
this->word = word;
this->level = level;
}
bool operator==(const state_t &other) const {
return this->word == other.word;
}
};
namespace std {
template<> struct hash<state_t> {
public:
size_t operator()(const state_t& s) const {
return str_hash(s.word);
}
private:
std::hash<std::string> str_hash;
};
}
class Solution {
public:
int ladderLength(const string& start, const string &end,
const unordered_set<string> &dict) {
queue<state_t> q;
unordered_set<state_t> visited; // 判重
auto state_is_valid = [&](const state_t& s) {
return dict.find(s.word) != dict.end() || s.word == end;
};
auto state_is_target = [&](const state_t &s) {return s.word == end; };
auto state_extend = [&](const state_t &s) {
unordered_set<state_t> result;
for (size_t i = 0; i < s.word.size(); ++i) {
state_t new_state(s.word, s.level + 1);
for (char c = 'a'; c <= 'z'; c++) {
// 防止同字母替换
if (c == new_state.word[i]) continue;
swap(c, new_state.word[i]);
if (state_is_valid(new_state) &&
visited.find(new_state) == visited.end()) {
result.insert(new_state);
}
swap(c, new_state.word[i]); // 恢复该单词
}
}
return result;
};
state_t start_state(start, 0);
q.push(start_state);
visited.insert(start_state);
while (!q.empty()) {
// 千万不能用 const auto&,pop() 会删除元素,
// 引用就变成了悬空引用
const auto state = q.front();
q.pop();
if (state_is_target(state)) {
return state.level + 1;
}
const auto& new_states = state_extend(state);
for (const auto& new_state : new_states) {
q.push(new_state);
visited.insert(new_state);
}
}
return 0;
}
};
双队列
// Word Ladder
// 时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
int ladderLength(const string& start, const string &end,
const unordered_set<string> &dict) {
queue<string> current, next; // 当前层,下一层
unordered_set<string> visited; // 判重
int level = -1; // 层次
auto state_is_valid = [&](const string& s) {
return dict.find(s) != dict.end() || s == end;
};
auto state_is_target = [&](const string &s) {return s == end;};
auto state_extend = [&](const string &s) {
unordered_set<string> result;
for (size_t i = 0; i < s.size(); ++i) {
string new_word(s);
for (char c = 'a'; c <= 'z'; c++) {
// 防止同字母替换
if (c == new_word[i]) continue;
swap(c, new_word[i]);
if (state_is_valid(new_word) &&
visited.find(new_word) == visited.end()) {
result.insert(new_word);
}
swap(c, new_word[i]); // 恢复该单词
}
}
return result;
};
current.push(start);
visited.insert(start);
while (!current.empty()) {
++level;
while (!current.empty()) {
// 千万不能用 const auto&,pop() 会删除元素,
// 引用就变成了悬空引用
const auto state = current.front();
current.pop();
if (state_is_target(state)) {
return level + 1;
}
const auto& new_states = state_extend(state);
for (const auto& new_state : new_states) {
next.push(new_state);
visited.insert(new_state);
}
}
swap(next, current);
}
return 0;
}
};