Interleaving String
描述
Given s1, s2, s3
, find whether s3
is formed by the interleaving of s1
and s2
.
For example, Given: s1 = "aabcc", s2 = "dbbca"
,
When s3 = "aadbbcbcac"
, return true.
When s3 = "aadbbbaccc"
, return false.
分析
设状态f[i][j]
,表示s1[0,i]
和s2[0,j]
,匹配s3[0, i+j]
。如果s1的最后一个字符等于s3的最后一个字符,则f[i][j]=f[i-1][j]
;如果s2的最后一个字符等于s3的最后一个字符,则f[i][j]=f[i][j-1]
。因此状态转移方程如下:
f[i][j] = (s1[i - 1] == s3 [i + j - 1] && f[i - 1][j])
|| (s2[j - 1] == s3 [i + j - 1] && f[i][j - 1]);
递归
// Interleaving String
// 递归,会超时,仅用来帮助理解
class Solution {
public:
bool isInterleave(const string& s1, const string& s2, const string& s3) {
if (s3.length() != s1.length() + s2.length())
return false;
return isInterleave(begin(s1), end(s1), begin(s2), end(s2),
begin(s3), end(s3));
}
template
bool isInterleave(InIt first1, InIt last1, InIt first2, InIt last2,
InIt first3, InIt last3) {
if (first3 == last3)
return first1 == last1 && first2 == last2;
return (*first1 == *first3
&& isInterleave(next(first1), last1, first2, last2,
next(first3), last3))
|| (*first2 == *first3
&& isInterleave(first1, last1, next(first2), last2,
next(first3), last3));
}
};
动规
// Interleaving String
// 二维动规,时间复杂度O(n^2),空间复杂度O(n^2)
class Solution {
public:
bool isInterleave(const string& s1, const string& s2, const string& s3) {
if (s3.length() != s1.length() + s2.length())
return false;
vector> f(s1.length() + 1,
vector(s2.length() + 1, true));
for (size_t i = 1; i
动规+滚动数组
// Interleaving String
// 二维动规+滚动数组,时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
bool isInterleave(const string& s1, const string& s2, const string& s3) {
if (s1.length() + s2.length() != s3.length())
return false;
if (s1.length() < s2.length())
return isInterleave(s2, s1, s3);
vector f(s2.length() + 1, true);
for (size_t i = 1; i