Super Ugly Number

描述

Write a function to find the n-th super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4.

Note:

  1. 1 is a super ugly number for any given primes.
  2. The given numbers in primes are in ascending order.
  3. 0 < k ≤ 100, 0 < n ≤ 1000000, 0 < primes[i] < 1000.

分析

这题是 Ugly Number II 的扩展。在"Ugly Number II"中,primes=[2,3,5],这题中primes可以自由变化。

所以这题可以用"Ugly Number II"的思路解决。每次要从多个列表中选择最小的元素,我们可以维护一个大小为primes长度的小根堆。

代码

// Super Ugly Number
// Time complexity: O(n), Space complexity: O(n)
public class Solution {
    public int nthSuperUglyNumber(int n, int[] primes) {
        final int[] nums = new int[n];
        nums[0] = 1; // 1 is the first ugly number
        final Queue<Node> q = new PriorityQueue<>();
        for (int i = 0; i < primes.length; ++i) {
            q.add(new Node(0, primes[i], primes[i]));
        }

        for (int i = 1; i < n; ++i) {
            // get the min element and add to nums
            Node node = q.peek();
            nums[i] = node.val;

            // update top elements
            do {
                node = q.poll();
                node.val = nums[++node.index] * node.prime;
                q.add(node); // push it back
                // prevent duplicate
            } while (!q.isEmpty() && q.peek().val == nums[i]);
        }
        return nums[n - 1];
    }
    static class Node implements Comparable<Node> {
        private int index;
        private int val;
        private int prime;

        public Node(int index, int val, int prime) {
            this.index = index;
            this.val = val;
            this.prime = prime;
        }
        public int compareTo(Node other) {
            return this.val - other.val;
        }
    }
}

相关题目

results matching ""

    No results matching ""