Unique Paths II

描述

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3 × 3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

备忘录法

在上一题的基础上改一下即可。相比动规,简单得多。

// Unique Paths II
// 深搜 + 缓存,即备忘录法
public class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        final int m = obstacleGrid.length;
        final int n = obstacleGrid[0].length;
        if (obstacleGrid[0][0] != 0 ||
                obstacleGrid[m - 1][n - 1] != 0) return 0;

        f = new int[m][n];
        f[0][0] = obstacleGrid[0][0] != 0 ? 0 : 1;
        return dfs(obstacleGrid, m - 1, n - 1);
    }

    // @return 从 (0, 0) 到 (x, y) 的路径总数
    int dfs(int[][] obstacleGrid, int x, int y) {
        if (x < 0 || y < 0) return 0; // 数据非法,终止条件

        // (x,y)是障碍
        if (obstacleGrid[x][y] != 0) return 0;

        if (x == 0 && y == 0) return f[0][0]; // 回到起点,收敛条件

        if (f[x][y] > 0) {
            return f[x][y];
        } else {
            return f[x][y] = dfs(obstacleGrid, x - 1, y) +
                    dfs(obstacleGrid, x, y - 1);
        }
    }
    private int[][] f;  // 缓存
}

动规

与上一题类似,但要特别注意第一列的障碍。在上一题中,第一列全部是1,但是在这一题中不同,第一列如果某一行有障碍物,那么后面的行全为0。

// Unique Paths II
// 动规,滚动数组
// 时间复杂度O(n^2),空间复杂度O(n)
public class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        final int m = obstacleGrid.length;
        final int n = obstacleGrid[0].length;
        if (obstacleGrid[0][0] != 0 || 
                obstacleGrid[m-1][n-1] != 0) return 0;

        int[] f = new int[n];
        f[0] = obstacleGrid[0][0] != 0 ? 0 : 1;

        for (int i = 0; i < m; i++) {
            f[0] = f[0] == 0 ? 0 : (obstacleGrid[i][0] != 0 ? 0 : 1);
            for (int j = 1; j < n; j++)
                f[j] = obstacleGrid[i][j] != 0 ? 0 : (f[j] + f[j - 1]);
        }

        return f[n - 1];
    }
}

相关题目

results matching ""

    No results matching ""