Best Time to Buy and Sell Stock III

描述

Say you have an array for which the i-th element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

分析

设状态f(i),表示区间[0,i](0in1)[0,i](0 \leq i \leq n-1)的最大利润,状态g(i),表示区间[i,n1](0in1)[i, n-1](0 \leq i \leq n-1)的最大利润,则最终答案为max{f(i)+g(i)},0in1\max\left\{f(i)+g(i)\right\},0 \leq i \leq n-1

允许在一天内买进又卖出,相当于不交易,因为题目的规定是最多两次,而不是一定要两次。

将原数组变成差分数组,本题也可以看做是最大m子段和,m=2,参考代码:https://gist.github.com/soulmachine/5906637

代码

// Best Time to Buy and Sell Stock III
// 时间复杂度O(n),空间复杂度O(n)
public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length < 2) return 0;

        final int n = prices.length;
        int[] f = new int[n];
        int[] g = new int[n];

        for (int i = 1, valley = prices[0]; i < n; ++i) {
            valley = Math.min(valley, prices[i]);
            f[i] = Math.max(f[i - 1], prices[i] - valley);
        }

        for (int i = n - 2, peak = prices[n - 1]; i >= 0; --i) {
            peak = Math.max(peak, prices[i]);
            g[i] = Math.max(g[i], peak - prices[i]);
        }

        int max_profit = 0;
        for (int i = 0; i < n; ++i)
            max_profit = Math.max(max_profit, f[i] + g[i]);

        return max_profit;
    }
}

相关题目

results matching ""

    No results matching ""